Development of Failure Criterion for Linear Amplitude Sweep (LAS) Test

Cassie Castorena, Chao Wang – North Carolina State University Bob Kluttz, Sebastian Puchalski – Kraton Polymers

> Presented to Asphalt Binder Expert Task Group Baton Rouge, LA September 16, 2014

LAS Test Procedure

Failure Mechanism

- LAS targets characterization of cohesive cracking resistance
 - Need to avoid
 - Distortion due to flow
 - ✓ Adhesive failure
 - Select test temperature such that initial |G*| is between 10MPa and 60MPa to ensure cohesive cracking failure

Increasing Temperature

S-VECD Analysis

- Relies on relationship between material integrity and damage
- Material integrity quantified using pseudo-stiffness (C)

$$C = \frac{\tau_{damaged}}{\gamma^{R} (= \tau_{undamaged})} \longrightarrow \gamma^{R} = |G^{*}|_{LVE} \cdot \gamma \longrightarrow C = \frac{|G^{*}|_{damaged}}{|G^{*}|_{LVE}}$$

Linear viscoelastic stress response

Damage quantified using internal state variable(D or S) derived using Schapery's work potential theory

$$D = \sum_{i=1}^{N} \frac{1}{2} (\gamma^{R})^{2} (C_{i-1} - C_{i})^{\frac{\alpha}{1+\alpha}} \cdot (t_{i} - t_{i-1})^{\frac{1}{1+\alpha}}$$

where γ^{R} = pseudostrain and α = material dependent constant

S-VECD Analysis

- Unique relationship between material integrity and damage allows for deriving closed form solution for fatigue law
 - Analysis can be accomplished automatically using an Excel spreadsheet

Fatigue Life Prediction

- Fatigue life prediction requires knowledge of when failure occurs
 - Initial failure definition in LAS procedure
 ✓ Arbitrary 35% reduction in material integrity
 - Revised material-dependent failure definition
 ✓ Peak in shear stress
 - Improved failure definition and corresponding failure criterion

✓ Based on pseudo-strain energy analysis

Failure Definition

Peak stress

Material dependent

Issue

 Ultimate failure delayed from peak stress

Failure Definition: LAS

- Investigation of alternative material dependent failure definitions
 - Peak in CxN corresponds to peak in stress
 - Peak in phase angle corresponds to ultimate failure

*CSR = constant strain amplitude rate

Pseudostrain Energy Analysis

- Peak in phase angle difficult to identify in some cases
 Phase angle not included in S-VECD model
 - Trends in pseudostrain energy (PSE) investigated

$$W_{s}^{R} = \frac{1}{2} \tau_{p} \cdot \gamma_{p}^{R} = \frac{1}{2} \cdot C \cdot (\gamma_{p}^{R})^{2}$$
$$W_{total}^{R} = \frac{1}{2} \cdot \tau_{undamaged} \cdot \gamma_{p}^{R} = \frac{1}{2} \cdot (\gamma_{p}^{R})^{2}$$
$$W_{r}^{R} = W_{total}^{R} - W_{s}^{R} = \frac{1}{2} \cdot (1 - C) \cdot (\gamma_{p}^{R})^{2}$$

Pseudostrain Energy Analysis

Peak in stored PSE can be used to define failure in LAS test

NC STATE UNIVERSITY

Kraton Polymer Results

Failure Criterion

- Necessary for performance prediction
 - Material integrity at failure dependent on loading history
- G^R = averaged rate of pseudo strain energy release during the fatigue test until failure
 - Relationship between G^R and N_f independent of loading history

Failure Criterion

Can be incorporated into S-VECD model for performance prediction in Excel Spreadsheet

Assessment of Performance Predictions using New Failure Definition & Criterion

Materials

- FHWA-ALF Control, CR-TB, Terpolymer and SBS-LG binders
- Experiments
 - LAS at 3 Constant Shear Amplitude Rate (CSR)
 - Time Sweep
 - ✓ Controlled Displacement (CD)
 - ✓ Controlled Stress (CS)

Comparison of Failure Criteria

Prediction of TS from LAS

Requires multiple LAS tests with varying CSRs

Field Validation

- Layered viscoelastic analysis conducted using mixture |E*| coupled with ALF conditions to determine tensile strain in bottom of asphalt layer
 - Binder to mix strain ratio of 80 used to predict N_f
 - ✓ S-VECD combined + failure criterion
- Reasonable correlation between binder and field except for CR-TB
 - CR-TB demonstrated highest binder N_f
 - CR-TB contained both SBS and tire rubber modification

Conclusions & Future Research

Conclusions

- Peak in stored PSE can be used to define failure in the LAS test
- Relationship between G^R and N_f can be incorporated into S-VECD model for improved performance prediction
- Future Research
 - More extensive mixture validation
 - Investigation of temperature effects
 - Consideration of nonlinearity

Thank you!

Acknowledgements

- Farinaz Safaei
- Richard Kim